- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper we study the behavior of a family of implicit numerical methods applied to stochastic differential equations with multiple time scales. We show by a combination of analytical arguments and numerical examples that implicit methods in general fail to capture the effective dynamics at the slow time scale. This is due to the fact that such implicit methods cannot correctly capture non-Dirac invariant distributions when the time step size is much larger than the relaxation time of the system.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7854.html} }In this paper we study the behavior of a family of implicit numerical methods applied to stochastic differential equations with multiple time scales. We show by a combination of analytical arguments and numerical examples that implicit methods in general fail to capture the effective dynamics at the slow time scale. This is due to the fact that such implicit methods cannot correctly capture non-Dirac invariant distributions when the time step size is much larger than the relaxation time of the system.