- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Recently, cavitated flows over underwater submerged bodies have attracted researchers to simulate large scale cavitation. Comparatively Computational Fluid Dynamics (CFD) approaches have been used widely and successfully to model developed cavitation. However, it is still a great challenge to accurately predict cavitated flow phenomena associated with interface capturing, viscous effects, unsteadiness and three-dimensionality. In this study, we consider the preconditioned three-dimensional multiphase Navier-Stokes equations comprised of the mixture density, mixture momentum and constituent volume fraction equations. A dual-time implicit formulation with LU Decomposition is employed to accommodate the inherently unsteady physics. Also, we adopt the Roe flux splitting method to deal with flux discretization in space. Moreover, time-derivative preconditioning is used to ensure well-conditioned eigenvalues of the high density ratio two-phase flow system to achieve computational efficiency. Validation cases include an unsteady 3-D cylindrical headform cavitated flow and an 2-D convergent-divergent nozzle channel cavity-problem.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7819.html} }Recently, cavitated flows over underwater submerged bodies have attracted researchers to simulate large scale cavitation. Comparatively Computational Fluid Dynamics (CFD) approaches have been used widely and successfully to model developed cavitation. However, it is still a great challenge to accurately predict cavitated flow phenomena associated with interface capturing, viscous effects, unsteadiness and three-dimensionality. In this study, we consider the preconditioned three-dimensional multiphase Navier-Stokes equations comprised of the mixture density, mixture momentum and constituent volume fraction equations. A dual-time implicit formulation with LU Decomposition is employed to accommodate the inherently unsteady physics. Also, we adopt the Roe flux splitting method to deal with flux discretization in space. Moreover, time-derivative preconditioning is used to ensure well-conditioned eigenvalues of the high density ratio two-phase flow system to achieve computational efficiency. Validation cases include an unsteady 3-D cylindrical headform cavitated flow and an 2-D convergent-divergent nozzle channel cavity-problem.