- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We propose a new method for numerical solution of the third-order differential equations. The key idea is to use relaxation approximation to transform the nonlinear third-order differential equation to a semilinear second-order differential system with a source term and a relaxation parameter. The relaxation system has linear characteristic variables and can be numerically solved without relying on Riemann problem solvers or linear iterations. A non-oscillatory finite volume method for the relaxation system is developed. The method is uniformly accurate for all relaxation rates. Numerical results are shown for some nonlinear problems such as the Korteweg-de Vires equation. Our method demonstrated the capability of accurately capturing soliton wave phenomena.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7816.html} }We propose a new method for numerical solution of the third-order differential equations. The key idea is to use relaxation approximation to transform the nonlinear third-order differential equation to a semilinear second-order differential system with a source term and a relaxation parameter. The relaxation system has linear characteristic variables and can be numerically solved without relying on Riemann problem solvers or linear iterations. A non-oscillatory finite volume method for the relaxation system is developed. The method is uniformly accurate for all relaxation rates. Numerical results are shown for some nonlinear problems such as the Korteweg-de Vires equation. Our method demonstrated the capability of accurately capturing soliton wave phenomena.