- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 4 (2008), pp. 729-796.
Published online: 2008-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this review article we discuss different techniques to solve numerically the time-dependent Schrödinger equation on unbounded domains. We present in detail the most recent approaches and describe briefly alternative ideas pointing out the relations between these works. We conclude with several numerical examples from different application areas to compare the presented techniques. We mainly focus on the one-dimensional problem but also touch upon the situation in two space dimensions and the cubic nonlinear case.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7814.html} }In this review article we discuss different techniques to solve numerically the time-dependent Schrödinger equation on unbounded domains. We present in detail the most recent approaches and describe briefly alternative ideas pointing out the relations between these works. We conclude with several numerical examples from different application areas to compare the presented techniques. We mainly focus on the one-dimensional problem but also touch upon the situation in two space dimensions and the cubic nonlinear case.