- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In the Equation-free framework, a macro-coarse projective integration method consists of two parts: the time stepper and time projection on macro scale. The first one consists of lifting, micro simulation and restriction. For extracting directly from microscopic simulations the information which would be obtained from the macroscopic model of two-dimensional microscopic systems, the time stepper based on the one-dimensional cumulative distribution functions, the marginal cumulative and appropriate number of the conditional cumulative distributions, is introduced. Here this procedure is tested on the nonlinear ion acoustic wave in a plasma. The numerical micro-solver is the one dimensional electrostatic particle-in-cell code. It is shown that particle correlations related to wave structures are better preserved by the new model. The lifting step is critically related to the noise in system. The enlarged noise, rise of correlations, trapping of particles during the wave steepening can seriously violate the basic assumptions of the equation-free approach.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7804.html} }In the Equation-free framework, a macro-coarse projective integration method consists of two parts: the time stepper and time projection on macro scale. The first one consists of lifting, micro simulation and restriction. For extracting directly from microscopic simulations the information which would be obtained from the macroscopic model of two-dimensional microscopic systems, the time stepper based on the one-dimensional cumulative distribution functions, the marginal cumulative and appropriate number of the conditional cumulative distributions, is introduced. Here this procedure is tested on the nonlinear ion acoustic wave in a plasma. The numerical micro-solver is the one dimensional electrostatic particle-in-cell code. It is shown that particle correlations related to wave structures are better preserved by the new model. The lifting step is critically related to the noise in system. The enlarged noise, rise of correlations, trapping of particles during the wave steepening can seriously violate the basic assumptions of the equation-free approach.