- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Several lumped parameter, or zero-dimensional (0-D), models of the microcirculation are coupled in the time domain to the nonlinear, one-dimensional (1-D) equations of blood flow in large arteries. A linear analysis of the coupled system, together with in vivo observations, shows that: (i) an inflow resistance that matches the characteristic impedance of the terminal arteries is required to avoid non-physiological wave reflections; (ii) periodic mean pressures and flow distributions in large arteries depend on arterial and peripheral resistances, but not on the compliances and inertias of the system, which only affect instantaneous pressure and flow waveforms; (iii) peripheral inertias have a minor effect on pulse waveforms under normal conditions; and (iv) the time constant of the diastolic pressure decay is the same in any 1-D model artery, if viscous dissipation can be neglected in these arteries, and it depends on all the peripheral compliances and resistances of the system. Following this analysis, we propose an algorithm to accurately estimate peripheral resistances and compliances from in vivo data. This algorithm is verified against numerical data simulated using a 1-D model network of the 55 largest human arteries, in which the parameters of the peripheral windkessel outflow models are known a priori. Pressure and flow waveforms in the aorta and the first generation of bifurcations are reproduced with relative root-mean-square errors smaller than 3%.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7792.html} }Several lumped parameter, or zero-dimensional (0-D), models of the microcirculation are coupled in the time domain to the nonlinear, one-dimensional (1-D) equations of blood flow in large arteries. A linear analysis of the coupled system, together with in vivo observations, shows that: (i) an inflow resistance that matches the characteristic impedance of the terminal arteries is required to avoid non-physiological wave reflections; (ii) periodic mean pressures and flow distributions in large arteries depend on arterial and peripheral resistances, but not on the compliances and inertias of the system, which only affect instantaneous pressure and flow waveforms; (iii) peripheral inertias have a minor effect on pulse waveforms under normal conditions; and (iv) the time constant of the diastolic pressure decay is the same in any 1-D model artery, if viscous dissipation can be neglected in these arteries, and it depends on all the peripheral compliances and resistances of the system. Following this analysis, we propose an algorithm to accurately estimate peripheral resistances and compliances from in vivo data. This algorithm is verified against numerical data simulated using a 1-D model network of the 55 largest human arteries, in which the parameters of the peripheral windkessel outflow models are known a priori. Pressure and flow waveforms in the aorta and the first generation of bifurcations are reproduced with relative root-mean-square errors smaller than 3%.