- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
The Chan-Vese method of active contours without edges [11] has been used successfully for segmentation of images. As a variational formulation, it involves the solution of a fully nonlinear partial differential equation which is usually solved by using time marching methods with semi-implicit schemes for a parabolic equation; the recent method of additive operator splitting [19,36] provides an effective acceleration of such schemes for images of moderate size. However to process images of large size, urgent need exists in developing fast multilevel methods. Here we present a multigrid method to solve the Chan-Vese nonlinear elliptic partial differential equation, and demonstrate the fast convergence. We also analyze the smoothing rates of the associated smoothers. Based on our numerical tests, a surprising observation is that our multigrid method is more likely to converge to the global minimizer of the particular non-convex problem than previously unilevel methods which may get stuck at local minimizers. Numerical examples are given to show the expected gain in CPU time and the added advantage of global solutions.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7791.html} }The Chan-Vese method of active contours without edges [11] has been used successfully for segmentation of images. As a variational formulation, it involves the solution of a fully nonlinear partial differential equation which is usually solved by using time marching methods with semi-implicit schemes for a parabolic equation; the recent method of additive operator splitting [19,36] provides an effective acceleration of such schemes for images of moderate size. However to process images of large size, urgent need exists in developing fast multilevel methods. Here we present a multigrid method to solve the Chan-Vese nonlinear elliptic partial differential equation, and demonstrate the fast convergence. We also analyze the smoothing rates of the associated smoothers. Based on our numerical tests, a surprising observation is that our multigrid method is more likely to converge to the global minimizer of the particular non-convex problem than previously unilevel methods which may get stuck at local minimizers. Numerical examples are given to show the expected gain in CPU time and the added advantage of global solutions.