- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper, we present a generalized Peierls-Nabarro model for curved dislocations using the discrete Fourier transform. In our model, the total energy is expressed in terms of the disregistry at the discrete lattice sites on the slip plane, and the elastic energy is obtained efficiently within the continuum framework using the discrete Fourier transform. Our model directly incorporates into the total energy both the Peierls energy for the motion of straight dislocations and the second Peierls energy for kink migration. The discreteness in both the elastic energy and the misfit energy, the full long-range elastic interaction for curved dislocations, and the changes of core and kink profiles with respect to the location of the dislocation or the kink are all included in our model. The model is presented for crystals with simple cubic lattice. Simulation results on the dislocation structure, Peierls energies and Peierls stresses of both straight and kinked dislocations are reported. These results qualitatively agree with those from experiments and atomistic simulations.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7790.html} }In this paper, we present a generalized Peierls-Nabarro model for curved dislocations using the discrete Fourier transform. In our model, the total energy is expressed in terms of the disregistry at the discrete lattice sites on the slip plane, and the elastic energy is obtained efficiently within the continuum framework using the discrete Fourier transform. Our model directly incorporates into the total energy both the Peierls energy for the motion of straight dislocations and the second Peierls energy for kink migration. The discreteness in both the elastic energy and the misfit energy, the full long-range elastic interaction for curved dislocations, and the changes of core and kink profiles with respect to the location of the dislocation or the kink are all included in our model. The model is presented for crystals with simple cubic lattice. Simulation results on the dislocation structure, Peierls energies and Peierls stresses of both straight and kinked dislocations are reported. These results qualitatively agree with those from experiments and atomistic simulations.