- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In [3], Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution. Their experimental results show that the detail of the restored images cannot be recovered. In this paper, we consider images in Lipschitz spaces, and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution. Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7787.html} }In [3], Chan and Wong proposed to use total variational regularization for both images and point spread functions in blind deconvolution. Their experimental results show that the detail of the restored images cannot be recovered. In this paper, we consider images in Lipschitz spaces, and propose to use Lipschitz regularization for images and total variational regularization for point spread functions in blind deconvolution. Our experimental results show that such combination of Lipschitz and total variational regularization methods can recover both images and point spread functions quite well.