- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7780.html} }A fourth-order finite difference method is proposed and studied for the primitive equations (PEs) of large-scale atmospheric and oceanic flow based on mean vorticity formulation. Since the vertical average of the horizontal velocity field is divergence-free, we can introduce mean vorticity and mean stream function which are connected by a 2-D Poisson equation. As a result, the PEs can be reformulated such that the prognostic equation for the horizontal velocity is replaced by evolutionary equations for the mean vorticity field and the vertical derivative of the horizontal velocity. The mean vorticity equation is approximated by a compact difference scheme due to the difficulty of the mean vorticity boundary condition, while fourth-order long-stencil approximations are utilized to deal with transport type equations for computational convenience. The numerical values for the total velocity field (both horizontal and vertical) are statically determined by a discrete realization of a differential equation at each fixed horizontal point. The method is highly efficient and is capable of producing highly resolved solutions at a reasonable computational cost. The full fourth-order accuracy is checked by an example of the reformulated PEs with force terms. Additionally, numerical results of a large-scale oceanic circulation are presented.