- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We study the multiscale finite element method for solving multiscale elliptic problems with highly oscillating coefficients, which is designed to accurately capture the large scale behaviors of the solution without resolving the small scale characters. The key idea is to construct the multiscale base functions in the local partial differential equation with proper boundary conditions. The boundary conditions are chosen to extract more accurate boundary information in the local problem. We consider periodic and non-periodic coefficients with linear and oscillatory boundary conditions for the base functions. Numerical examples will be provided to demonstrate the effectiveness of the proposed multiscale finite element method.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7771.html} }We study the multiscale finite element method for solving multiscale elliptic problems with highly oscillating coefficients, which is designed to accurately capture the large scale behaviors of the solution without resolving the small scale characters. The key idea is to construct the multiscale base functions in the local partial differential equation with proper boundary conditions. The boundary conditions are chosen to extract more accurate boundary information in the local problem. We consider periodic and non-periodic coefficients with linear and oscillatory boundary conditions for the base functions. Numerical examples will be provided to demonstrate the effectiveness of the proposed multiscale finite element method.