- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates. The artificial compressibility approach is used, which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied. The convective terms are approximated by a third-order upwind compact scheme implemented with flux difference splitting, and the viscous terms are approximated by a fourth-order central compact scheme. The solution algorithm used is the Beam-Warming approximate factorization scheme. Numerical solutions to benchmark problems of the steady plane Couette-Poiseuille flow, the lid-driven cavity flow, and the constricting channel flow with varying geometry are presented. The computed results are found in good agreement with established analytical and numerical results. The third-order accuracy of the scheme is verified on uniform rectangular meshes.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7759.html} }This paper presents a new version of the upwind compact finite difference scheme for solving the incompressible Navier-Stokes equations in generalized curvilinear coordinates. The artificial compressibility approach is used, which transforms the elliptic-parabolic equations into the hyperbolic-parabolic ones so that flux difference splitting can be applied. The convective terms are approximated by a third-order upwind compact scheme implemented with flux difference splitting, and the viscous terms are approximated by a fourth-order central compact scheme. The solution algorithm used is the Beam-Warming approximate factorization scheme. Numerical solutions to benchmark problems of the steady plane Couette-Poiseuille flow, the lid-driven cavity flow, and the constricting channel flow with varying geometry are presented. The computed results are found in good agreement with established analytical and numerical results. The third-order accuracy of the scheme is verified on uniform rectangular meshes.