- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
An application of recent uncertainty quantification techniques to Wind Engineering is presented. In particular, the study of the effects of small geometric changes in the Sunshine Skyway Bridge deck on its aerodynamic behavior is addressed. This results in the numerical solution of a proper PDE posed in a domain affected by randomness, which is handled through a mapping approach. A non-intrusive Polynomial Chaos expansion allows to transform the stochastic problem into a deterministic one, in which a commercial code is used as a black-box for the solution of a number of Reynolds-Averaged Navier-Stokes simulations. The use of proper Gauss-Patterson nested quadrature formulas with respect to a Truncated Weibull probability density function permits to limit the number of these computationally expensive simulations, though maintaining a sufficient accuracy. Polynomial Chaos approximations, statistical moments and probability density functions of time-independent quantities of interest for the engineering applications are obtained.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7747.html} }An application of recent uncertainty quantification techniques to Wind Engineering is presented. In particular, the study of the effects of small geometric changes in the Sunshine Skyway Bridge deck on its aerodynamic behavior is addressed. This results in the numerical solution of a proper PDE posed in a domain affected by randomness, which is handled through a mapping approach. A non-intrusive Polynomial Chaos expansion allows to transform the stochastic problem into a deterministic one, in which a commercial code is used as a black-box for the solution of a number of Reynolds-Averaged Navier-Stokes simulations. The use of proper Gauss-Patterson nested quadrature formulas with respect to a Truncated Weibull probability density function permits to limit the number of these computationally expensive simulations, though maintaining a sufficient accuracy. Polynomial Chaos approximations, statistical moments and probability density functions of time-independent quantities of interest for the engineering applications are obtained.