- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
We present the application of the recent physics-conforming COOL method [2, 4] to the eigenvalue problem of a cylindrical waveguide filled with unmagnetized plasma. Using the Fourier transform only along the waveguide and not in poloidal direction, this is a relevant test case for a numerical discretization method in two dimensions (radial and poloidal). Analytically, the frequency spectrum consists of discrete electromagnetic parts and, depending on the electron density profile of the plasma, of infinitely degenerate and/or continuous, essentially electrostatic parts. If the plasma is absent, the latter reduces to the infinitely degenerate zero eigenvalue of electrostatics. A good discretization method for the Maxwell equations must reproduce these properties. It is shown here that the COOL method meets this demand properly and to very high precision.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7740.html} }We present the application of the recent physics-conforming COOL method [2, 4] to the eigenvalue problem of a cylindrical waveguide filled with unmagnetized plasma. Using the Fourier transform only along the waveguide and not in poloidal direction, this is a relevant test case for a numerical discretization method in two dimensions (radial and poloidal). Analytically, the frequency spectrum consists of discrete electromagnetic parts and, depending on the electron density profile of the plasma, of infinitely degenerate and/or continuous, essentially electrostatic parts. If the plasma is absent, the latter reduces to the infinitely degenerate zero eigenvalue of electrostatics. A good discretization method for the Maxwell equations must reproduce these properties. It is shown here that the COOL method meets this demand properly and to very high precision.