- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
In this paper, we reformulate the piecewise linear discontinuous Galerkin (DG) method for solving two dimensional steady state scalar conservation laws in the framework of residual distribution (RD) schemes. This allows us to propose a new class of nonlinear stabilization that does not destroy the formal accuracy of the schemes. Numerical results are shown to demonstrate the behavior of this approach.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7737.html} }In this paper, we reformulate the piecewise linear discontinuous Galerkin (DG) method for solving two dimensional steady state scalar conservation laws in the framework of residual distribution (RD) schemes. This allows us to propose a new class of nonlinear stabilization that does not destroy the formal accuracy of the schemes. Numerical results are shown to demonstrate the behavior of this approach.