- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
This paper presents a review of the current state-of-the-art of numerical methods for stochastic computations. The focus is on efficient high-order methods suitable for practical applications, with a particular emphasis on those based on generalized polynomial chaos (gPC) methodology. The framework of gPC is reviewed, along with its Galerkin and collocation approaches for solving stochastic equations. Properties of these methods are summarized by using results from literature. This paper also attempts to present the gPC based methods in a unified framework based on an extension of the classical spectral methods into multi-dimensional random spaces.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7732.html} }This paper presents a review of the current state-of-the-art of numerical methods for stochastic computations. The focus is on efficient high-order methods suitable for practical applications, with a particular emphasis on those based on generalized polynomial chaos (gPC) methodology. The framework of gPC is reviewed, along with its Galerkin and collocation approaches for solving stochastic equations. Properties of these methods are summarized by using results from literature. This paper also attempts to present the gPC based methods in a unified framework based on an extension of the classical spectral methods into multi-dimensional random spaces.