- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
This article is devoted to the construction of a numerical scheme to solve the equations of radiative hydrodynamics. We use this numerical procedure to compute shock profiles and illustrate some earlier theoretical results about their smoothness and monotonicity properties. We first consider a scalar toy model, then we extend our analysis to a more realistic system for the radiative hydrodynamics that couples the Euler equations and an elliptic equation.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7719.html} }This article is devoted to the construction of a numerical scheme to solve the equations of radiative hydrodynamics. We use this numerical procedure to compute shock profiles and illustrate some earlier theoretical results about their smoothness and monotonicity properties. We first consider a scalar toy model, then we extend our analysis to a more realistic system for the radiative hydrodynamics that couples the Euler equations and an elliptic equation.