- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years. Similar to Monte Carlo methods, the stochastic collocation methods are non-intrusive in that they can be implemented via repetitive execution of an existing deterministic solver without modifying it. The choice of collocation points leads to a variety of stochastic collocation methods including tensor product method, Smolyak method, Stroud 2 or 3 cubature method, and adaptive Stroud method. Another type of collocation method, the probabilistic collocation method (PCM), has also been proposed and applied to flow in porous media. In this paper, we discuss these methods in terms of their accuracy, efficiency, and applicable range for flow in spatially correlated random fields. These methods are compared in details under different conditions of spatial variability and correlation length. This study reveals that the Smolyak method and the PCM outperform other stochastic collocation methods in terms of accuracy and efficiency. The random dimensionality in approximating input random fields plays a crucial role in the performance of the stochastic collocation methods. Our numerical experiments indicate that the required random dimensionality increases slightly with the decrease of correlation scale and moderately from one to multiple physical dimensions.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7690.html} }Stochastic collocation methods as a promising approach for solving stochastic partial differential equations have been developed rapidly in recent years. Similar to Monte Carlo methods, the stochastic collocation methods are non-intrusive in that they can be implemented via repetitive execution of an existing deterministic solver without modifying it. The choice of collocation points leads to a variety of stochastic collocation methods including tensor product method, Smolyak method, Stroud 2 or 3 cubature method, and adaptive Stroud method. Another type of collocation method, the probabilistic collocation method (PCM), has also been proposed and applied to flow in porous media. In this paper, we discuss these methods in terms of their accuracy, efficiency, and applicable range for flow in spatially correlated random fields. These methods are compared in details under different conditions of spatial variability and correlation length. This study reveals that the Smolyak method and the PCM outperform other stochastic collocation methods in terms of accuracy and efficiency. The random dimensionality in approximating input random fields plays a crucial role in the performance of the stochastic collocation methods. Our numerical experiments indicate that the required random dimensionality increases slightly with the decrease of correlation scale and moderately from one to multiple physical dimensions.