- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1238-1255) developed exact first and second nonlocal moment equations for advective-dispersive transport in finite, randomly heterogeneous geologic media. The velocity and concentration in these equations are generally nonstationary due to trends in heterogeneity, conditioning on site data and the influence of forcing terms. Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1399-1418) solved the Laplace transformed versions of these equations recursively to second order in the standard deviation σY of (natural) log hydraulic conductivity, and iteratively to higher-order, by finite elements followed by numerical inversion of the Laplace transform. They did the same for a space-localized version of the mean transport equation. Here we recount briefly their theory and algorithms; compare the numerical performance of the Laplace-transform finite element scheme with that of a high-accuracy ULTIMATE-QUICKEST algorithm coupled with an alternating split operator approach; and review some computational results due to Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1399-1418) to shed light on the accuracy and computational efficiency of their recursive and iterative solutions in comparison to conditional Monte Carlo simulations in two spatial dimensions.
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7675.html} }Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1238-1255) developed exact first and second nonlocal moment equations for advective-dispersive transport in finite, randomly heterogeneous geologic media. The velocity and concentration in these equations are generally nonstationary due to trends in heterogeneity, conditioning on site data and the influence of forcing terms. Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1399-1418) solved the Laplace transformed versions of these equations recursively to second order in the standard deviation σY of (natural) log hydraulic conductivity, and iteratively to higher-order, by finite elements followed by numerical inversion of the Laplace transform. They did the same for a space-localized version of the mean transport equation. Here we recount briefly their theory and algorithms; compare the numerical performance of the Laplace-transform finite element scheme with that of a high-accuracy ULTIMATE-QUICKEST algorithm coupled with an alternating split operator approach; and review some computational results due to Morales-Casique et al. (Adv. Water Res., 29 (2006), pp. 1399-1418) to shed light on the accuracy and computational efficiency of their recursive and iterative solutions in comparison to conditional Monte Carlo simulations in two spatial dimensions.