- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Cited by
- BibTex
- RIS
- TXT
Aerosol modelling is very important to study and simulate the behavior of aerosol dynamics in atmospheric environment. In this paper, we consider the general nonlinear aerosol dynamic equations which describe the evolution of the aerosol distribution. Continuous time and discrete time wavelet Galerkin methods are proposed for solving this problem. By using the Schauder's fixed point theorem and the variational technique, the global existence and uniqueness of solution of continuous time wavelet numerical methods are established for the nonlinear aerosol dynamics with sufficiently smooth initial conditions. Optimal error estimates are obtained for both continuous and discrete time wavelet Galerkin schemes. Numerical examples are given to show the efficiency of the wavelet technique
}, issn = {1991-7120}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/cicp/7674.html} }Aerosol modelling is very important to study and simulate the behavior of aerosol dynamics in atmospheric environment. In this paper, we consider the general nonlinear aerosol dynamic equations which describe the evolution of the aerosol distribution. Continuous time and discrete time wavelet Galerkin methods are proposed for solving this problem. By using the Schauder's fixed point theorem and the variational technique, the global existence and uniqueness of solution of continuous time wavelet numerical methods are established for the nonlinear aerosol dynamics with sufficiently smooth initial conditions. Optimal error estimates are obtained for both continuous and discrete time wavelet Galerkin schemes. Numerical examples are given to show the efficiency of the wavelet technique