- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 7 (2010), pp. 317-332.
Published online: 2010-02
Cited by
- BibTex
- RIS
- TXT
This paper is concerned with the numerical investigation of a macroscopic model for complex fluids in “1+2” dimension case. We consider the planar pressure driven flow where the direction of the molecules is constrained in the shear plane. The modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will be developed. By using this scheme, it is observed numerically that the direction of the molecules will tumble from the boundary layer and later on the inner layer with a much longer time period. This is consistent with the theoretical prediction. Moreover, we find some complex phenomena, where the tumbling rises from boundary layer and is then embedded into the interior area more clearly when the viscosity coefficient µ of the macro flow has a larger value. The norm of the molecular director d will endure greater change as well. This implies that the viscosity of flow plays the role of an accelerator in the whole complex fluids. Comparing these results with the theoretical analysis, we can find that the gradient of the velocity has direct impact on the tumbling phenomena. These results show that the proposed scheme is capable of exploring some physical phenomena embedded in the macro-micro model.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.08.206}, url = {http://global-sci.org/intro/article_detail/cicp/7631.html} }This paper is concerned with the numerical investigation of a macroscopic model for complex fluids in “1+2” dimension case. We consider the planar pressure driven flow where the direction of the molecules is constrained in the shear plane. The modified Crank-Nicolson finite difference scheme satisfying a discrete energy law will be developed. By using this scheme, it is observed numerically that the direction of the molecules will tumble from the boundary layer and later on the inner layer with a much longer time period. This is consistent with the theoretical prediction. Moreover, we find some complex phenomena, where the tumbling rises from boundary layer and is then embedded into the interior area more clearly when the viscosity coefficient µ of the macro flow has a larger value. The norm of the molecular director d will endure greater change as well. This implies that the viscosity of flow plays the role of an accelerator in the whole complex fluids. Comparing these results with the theoretical analysis, we can find that the gradient of the velocity has direct impact on the tumbling phenomena. These results show that the proposed scheme is capable of exploring some physical phenomena embedded in the macro-micro model.