- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 7 (2010), pp. 212-223.
Published online: 2010-07
Cited by
- BibTex
- RIS
- TXT
Natural cavitation is defined as the phenomenon of the formation of vapor bubbles in a flow due to the pressure falls below the liquid's vapor pressure. The inception of the cavitation bubble is influenced by many factors, such as impurities, turbulence, liquid thermal properties etc. In this paper, we simulate a 2D cavitation "bubble" growth under shear flow in the inception stage by Single-Component-Multiphase Lattice Boltzmann Model (SCMP LBM). An empirical boundary condition sensitive 2D bubble growth rate, R ∼ et , is postulated. Furthermore, the comparison is conducted for bubble behavior under different shear rates. The results show that the cavitation bubble deformation is coincident with prior droplet theories and the bubble growth decreases slightly with the flow shear rate.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.09.015}, url = {http://global-sci.org/intro/article_detail/cicp/7625.html} }Natural cavitation is defined as the phenomenon of the formation of vapor bubbles in a flow due to the pressure falls below the liquid's vapor pressure. The inception of the cavitation bubble is influenced by many factors, such as impurities, turbulence, liquid thermal properties etc. In this paper, we simulate a 2D cavitation "bubble" growth under shear flow in the inception stage by Single-Component-Multiphase Lattice Boltzmann Model (SCMP LBM). An empirical boundary condition sensitive 2D bubble growth rate, R ∼ et , is postulated. Furthermore, the comparison is conducted for bubble behavior under different shear rates. The results show that the cavitation bubble deformation is coincident with prior droplet theories and the bubble growth decreases slightly with the flow shear rate.