- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 7 (2010), pp. 103-137.
Published online: 2010-07
Cited by
- BibTex
- RIS
- TXT
High order finite difference approximations are derived for a one-dimensional model of the shifted wave equation written in second-order form. The domain is discretized using fully compatible summation by parts operators and the boundary conditions are imposed using a penalty method, leading to fully explicit time integration. This discretization yields a strictly stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension. The present study is the first step towards a strictly stable simulation of the second-order formulation of Einstein's equations in three spatial dimensions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.08.135}, url = {http://global-sci.org/intro/article_detail/cicp/7621.html} }High order finite difference approximations are derived for a one-dimensional model of the shifted wave equation written in second-order form. The domain is discretized using fully compatible summation by parts operators and the boundary conditions are imposed using a penalty method, leading to fully explicit time integration. This discretization yields a strictly stable and efficient scheme. The analysis is verified by numerical simulations in one-dimension. The present study is the first step towards a strictly stable simulation of the second-order formulation of Einstein's equations in three spatial dimensions.