- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 541-564.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
Based on a novel numerical flux involving jumps of even order derivatives of the numerical solution, a direct discontinuous Galerkin (DDG) method for diffusion problems was introduced in [H. Liu and J. Yan, SIAM J. Numer. Anal. 47(1) (2009), 475-698]. In this work, we show that higher order (k≥4) derivatives in the numerical flux can be avoided if some interface corrections are included in the weak formulation of the DDG method; still the jump of 2nd order derivatives is shown to be important for the method to be efficient with a fixed penalty parameter for all pk elements. The refined DDG method with such numerical fluxes enjoys the optimal (k+1)th order of accuracy. The developed method is also extended to solve convection diffusion problems in both one- and two-dimensional settings. A series of numerical tests are presented to demonstrate the high order accuracy of the method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.010909.011209a}, url = {http://global-sci.org/intro/article_detail/cicp/7584.html} }Based on a novel numerical flux involving jumps of even order derivatives of the numerical solution, a direct discontinuous Galerkin (DDG) method for diffusion problems was introduced in [H. Liu and J. Yan, SIAM J. Numer. Anal. 47(1) (2009), 475-698]. In this work, we show that higher order (k≥4) derivatives in the numerical flux can be avoided if some interface corrections are included in the weak formulation of the DDG method; still the jump of 2nd order derivatives is shown to be important for the method to be efficient with a fixed penalty parameter for all pk elements. The refined DDG method with such numerical fluxes enjoys the optimal (k+1)th order of accuracy. The developed method is also extended to solve convection diffusion problems in both one- and two-dimensional settings. A series of numerical tests are presented to demonstrate the high order accuracy of the method.