- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 403-426.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
The modified ghost fluid method (MGFM) has been shown to be robust and efficient when being applied to multi-medium compressible flows. In this paper, we rigorously analyze the optimal error estimation of the MGFM when it is applied to the multi-fluid Riemann problem. By analyzing the properties of the MGFM and the approximate Riemann problem solver (ARPS), we show that the interfacial status provided by the MGFM can achieve “third-order accuracy” in the sense of comparing to the exact solution of the Riemann problem, regardless of the solution type. In addition, our analysis further reveals that the ARPS based on a doubled shock structure in the MGFM is suitable for almost any conditions for predicting the interfacial status, and that the “natural” approach of “third-order accuracy” is practically less useful. Various examples are presented to validate the conclusions made.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.110509.271009a}, url = {http://global-sci.org/intro/article_detail/cicp/7578.html} }The modified ghost fluid method (MGFM) has been shown to be robust and efficient when being applied to multi-medium compressible flows. In this paper, we rigorously analyze the optimal error estimation of the MGFM when it is applied to the multi-fluid Riemann problem. By analyzing the properties of the MGFM and the approximate Riemann problem solver (ARPS), we show that the interfacial status provided by the MGFM can achieve “third-order accuracy” in the sense of comparing to the exact solution of the Riemann problem, regardless of the solution type. In addition, our analysis further reveals that the ARPS based on a doubled shock structure in the MGFM is suitable for almost any conditions for predicting the interfacial status, and that the “natural” approach of “third-order accuracy” is practically less useful. Various examples are presented to validate the conclusions made.