- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 327-350.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
The dynamics and interaction of quantized vortices in Bose-Einstein condensates (BECs) are investigated by using the two-dimensional Gross-Pitaevskii equation (GPE) with/without an angular momentum rotation term. If all vortices have the same winding number, they would rotate around the trap center but never collide. In contrast, if the winding numbers are different, their interaction highly depends on the initial distance between vortex centers. The analytical results are presented to describe the dynamics of the vortex centers when β=0. While if β≠0, there is no analytical result but some conclusive numerical findings are provided for the further understanding of vortex interaction in BECs. Finally, the dynamic laws describing the relation of vortex interaction in nonrotating and rotating BECs are presented.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.09.104}, url = {http://global-sci.org/intro/article_detail/cicp/7575.html} }The dynamics and interaction of quantized vortices in Bose-Einstein condensates (BECs) are investigated by using the two-dimensional Gross-Pitaevskii equation (GPE) with/without an angular momentum rotation term. If all vortices have the same winding number, they would rotate around the trap center but never collide. In contrast, if the winding numbers are different, their interaction highly depends on the initial distance between vortex centers. The analytical results are presented to describe the dynamics of the vortex centers when β=0. While if β≠0, there is no analytical result but some conclusive numerical findings are provided for the further understanding of vortex interaction in BECs. Finally, the dynamic laws describing the relation of vortex interaction in nonrotating and rotating BECs are presented.