- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 226-248.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
For a simple model of a scalar wave equation with a random wave speed, Gottlieb and Xiu [Commun. Comput. Phys., 3 (2008), pp. 505-518] employed the generalized polynomial chaos (gPC) method and demonstrated that when uncertainty causes the change of characteristic directions, the resulting deterministic system of equations is a symmetric hyperbolic system with both positive and negative eigenvalues. Consequently, a consistent method of imposing the boundary conditions is proposed and its convergence is established under the assumption that the expansion coefficients decay fast asymptotically. In this work, we investigate stochastic collocation methods for the same type of scalar wave equation with random wave speed. It will be demonstrated that the rate of convergence depends on the regularity of the solutions; and the regularity is determined by the random wave speed and the initial and boundary data. Numerical examples are presented to support the analysis and also to show the sharpness of the assumptions on the relationship between the random wave speed and the initial and boundary data. An accuracy enhancement technique is investigated following the multi-element collocation method proposed by Foo, Wan and Karniadakis [J. Comput. Phys., 227 (2008), pp. 9572-9595].
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060109.130110a}, url = {http://global-sci.org/intro/article_detail/cicp/7570.html} }For a simple model of a scalar wave equation with a random wave speed, Gottlieb and Xiu [Commun. Comput. Phys., 3 (2008), pp. 505-518] employed the generalized polynomial chaos (gPC) method and demonstrated that when uncertainty causes the change of characteristic directions, the resulting deterministic system of equations is a symmetric hyperbolic system with both positive and negative eigenvalues. Consequently, a consistent method of imposing the boundary conditions is proposed and its convergence is established under the assumption that the expansion coefficients decay fast asymptotically. In this work, we investigate stochastic collocation methods for the same type of scalar wave equation with random wave speed. It will be demonstrated that the rate of convergence depends on the regularity of the solutions; and the regularity is determined by the random wave speed and the initial and boundary data. Numerical examples are presented to support the analysis and also to show the sharpness of the assumptions on the relationship between the random wave speed and the initial and boundary data. An accuracy enhancement technique is investigated following the multi-element collocation method proposed by Foo, Wan and Karniadakis [J. Comput. Phys., 227 (2008), pp. 9572-9595].