- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 143-158.
Published online: 2010-08
Cited by
- BibTex
- RIS
- TXT
In this paper, we investigate the stability for a finite harmonic lattice under a certain class of boundary conditions. A rigorous eigenvalue study clarifies that the invalidity of Fourier modes as the basis results in the deficiency of standard reflection coefficient approach for stability analysis. In a certain parameter range, unstable surface modes exist in the form of exponential decay in space, and exponential growth in time. An approximate eigen-polynomial is proposed to ease the stability analysis. Moreover, the eigenvalues with small positive real part quantitatively explain the long time instability in wave propagation computations. Numerical results verify the analysis.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.2009.09.065}, url = {http://global-sci.org/intro/article_detail/cicp/7566.html} }In this paper, we investigate the stability for a finite harmonic lattice under a certain class of boundary conditions. A rigorous eigenvalue study clarifies that the invalidity of Fourier modes as the basis results in the deficiency of standard reflection coefficient approach for stability analysis. In a certain parameter range, unstable surface modes exist in the form of exponential decay in space, and exponential growth in time. An approximate eigen-polynomial is proposed to ease the stability analysis. Moreover, the eigenvalues with small positive real part quantitatively explain the long time instability in wave propagation computations. Numerical results verify the analysis.