- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 8 (2010), pp. 1-50.
Published online: 2010-08
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
The objective of this paper is to review recent developments in numerical reconstruction methods for inverse transport problems in imaging applications, mainly optical tomography, fluorescence tomography and bioluminescence tomography. In those inverse problems, one aims at reconstructing physical parameters, such as the absorption coefficient, the scattering coefficient and the fluorescence light source, inside heterogeneous media, from partial knowledge of transport solutions on the boundaries of the media. The physical parameters recovered can be used for diagnostic purpose. Numerical reconstruction techniques for those inverse transport problems can be roughly classified into two categories: linear reconstruction methods and nonlinear reconstruction methods. In the first type of methods, the inverse problems are linearized around some known background to obtain linear inverse problems. Classical regularization techniques are then applied to solve those inverse problems. The second type of methods are either based on regularized nonlinear least-square techniques or based on gradient-driven iterative methods for nonlinear operator equations. In either case, the unknown parameters are iteratively updated until the solutions of the transport equations with the those parameters match the measurements to a certain extent. We review linear and nonlinear reconstruction methods for inverse transport problems in medical imaging with stationary, frequency-domain and time-dependent data. The materials presented include both existing and new results. Meanwhile, we attempt to present similar algorithms for different problems in the same framework to make it more straightforward to generalize those algorithms to other inverse (transport) problems.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.220509.200110a}, url = {http://global-sci.org/intro/article_detail/cicp/7562.html} }The objective of this paper is to review recent developments in numerical reconstruction methods for inverse transport problems in imaging applications, mainly optical tomography, fluorescence tomography and bioluminescence tomography. In those inverse problems, one aims at reconstructing physical parameters, such as the absorption coefficient, the scattering coefficient and the fluorescence light source, inside heterogeneous media, from partial knowledge of transport solutions on the boundaries of the media. The physical parameters recovered can be used for diagnostic purpose. Numerical reconstruction techniques for those inverse transport problems can be roughly classified into two categories: linear reconstruction methods and nonlinear reconstruction methods. In the first type of methods, the inverse problems are linearized around some known background to obtain linear inverse problems. Classical regularization techniques are then applied to solve those inverse problems. The second type of methods are either based on regularized nonlinear least-square techniques or based on gradient-driven iterative methods for nonlinear operator equations. In either case, the unknown parameters are iteratively updated until the solutions of the transport equations with the those parameters match the measurements to a certain extent. We review linear and nonlinear reconstruction methods for inverse transport problems in medical imaging with stationary, frequency-domain and time-dependent data. The materials presented include both existing and new results. Meanwhile, we attempt to present similar algorithms for different problems in the same framework to make it more straightforward to generalize those algorithms to other inverse (transport) problems.