- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 1375-1396.
Published online: 2011-05
Cited by
- BibTex
- RIS
- TXT
Coupling the immersed boundary (IB) method and the lattice Boltzmann (LB) method might be a promising approach to simulate fluid-structure interaction (FSI) problems with flexible structures and complex boundaries, because the former is a general simulation method for FSIs in biological systems, the latter is an efficient scheme for fluid flow simulations, and both of them work on regular Cartesian grids. In this paper an IB-LB coupling scheme is proposed and its feasibility is verified. The scheme is suitable for FSI problems concerning rapid flexible boundary motion and a large pressure gradient across the boundary. We first analyze the respective concepts, formulae and advantages of the IB and LB methods, and then explain the coupling strategy and detailed implementation procedures. To verify the effectiveness and accuracy, FSI problems arising from the relaxation of a distorted balloon immersed in a viscous fluid, an unsteady wake flow caused by an impulsively started circular cylinder at Reynolds number 9500, and an unsteady vortex shedding flow past a suddenly started rotating circular cylinder at Reynolds number 1000 are simulated. The first example is a benchmark case for flexible boundary FSI with a large pressure gradient across the boundary, the second is a fixed complex boundary problem, and the third is a typical moving boundary example. The results are in good agreement with the analytical and existing numerical data. It is shown that the proposed scheme is capable of modeling flexible boundary and complex boundary problems at a second-order spatial convergence; the volume leakage defect of the conventional IB method has been remedied by using a new method of introducing the unsteady and non-uniform external force; and the LB method makes the IB method simulation simpler and more efficient.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.301009.211210s}, url = {http://global-sci.org/intro/article_detail/cicp/7558.html} }Coupling the immersed boundary (IB) method and the lattice Boltzmann (LB) method might be a promising approach to simulate fluid-structure interaction (FSI) problems with flexible structures and complex boundaries, because the former is a general simulation method for FSIs in biological systems, the latter is an efficient scheme for fluid flow simulations, and both of them work on regular Cartesian grids. In this paper an IB-LB coupling scheme is proposed and its feasibility is verified. The scheme is suitable for FSI problems concerning rapid flexible boundary motion and a large pressure gradient across the boundary. We first analyze the respective concepts, formulae and advantages of the IB and LB methods, and then explain the coupling strategy and detailed implementation procedures. To verify the effectiveness and accuracy, FSI problems arising from the relaxation of a distorted balloon immersed in a viscous fluid, an unsteady wake flow caused by an impulsively started circular cylinder at Reynolds number 9500, and an unsteady vortex shedding flow past a suddenly started rotating circular cylinder at Reynolds number 1000 are simulated. The first example is a benchmark case for flexible boundary FSI with a large pressure gradient across the boundary, the second is a fixed complex boundary problem, and the third is a typical moving boundary example. The results are in good agreement with the analytical and existing numerical data. It is shown that the proposed scheme is capable of modeling flexible boundary and complex boundary problems at a second-order spatial convergence; the volume leakage defect of the conventional IB method has been remedied by using a new method of introducing the unsteady and non-uniform external force; and the LB method makes the IB method simulation simpler and more efficient.