- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 1152-1164.
Published online: 2011-05
Cited by
- BibTex
- RIS
- TXT
Homogeneous isotropic turbulence has been playing a key role in the research of turbulence theory. And the pseudo-spectral method is the most popular numerical method to simulate this type of flow fields in a periodic box, where fast Fourier transform (FFT) is mostly effective. However, the bottle-neck in this method is the memory of computer, which motivates us to construct a memory-saving algorithm for spectral method in present paper. Inevitably, more times of FFT are needed as compensation. In the most memory-saving situation, only 6 three-dimension arrays are employed in the code. The cost of computation is increased by a factor of 4, and that 38 FFTs are needed per time step instead of the previous 9 FFTs. A simulation of isotropic turbulence on 20483 grid can be implemented on a 256G distributed memory clusters through this method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.191209.111110s}, url = {http://global-sci.org/intro/article_detail/cicp/7543.html} }Homogeneous isotropic turbulence has been playing a key role in the research of turbulence theory. And the pseudo-spectral method is the most popular numerical method to simulate this type of flow fields in a periodic box, where fast Fourier transform (FFT) is mostly effective. However, the bottle-neck in this method is the memory of computer, which motivates us to construct a memory-saving algorithm for spectral method in present paper. Inevitably, more times of FFT are needed as compensation. In the most memory-saving situation, only 6 three-dimension arrays are employed in the code. The cost of computation is increased by a factor of 4, and that 38 FFTs are needed per time step instead of the previous 9 FFTs. A simulation of isotropic turbulence on 20483 grid can be implemented on a 256G distributed memory clusters through this method.