- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 917-936.
Published online: 2011-09
Cited by
- BibTex
- RIS
- TXT
The emission of scission neutrons from fissioning nuclei is of high practical interest. To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scission dynamics. Numerically, this implies the solution of the bi-dimensional Schrödinger equation, both stationary and time-dependent. To describe axially symmetric extremely deformed nuclear shapes, we have used the Cassini parametrization. The Hamiltonian is discretized by using finite difference approximations of the derivatives. The main computational challenges are the solution of algebraic eigenvalue problems and of linear systems with large sparse matrices. We have employed appropriate procedures (Arnoldi and bi-conjugate gradients). The numerical solutions have been used to evaluate physical quantities, like the number of emitted neutrons per scission event, the primary fragments' excitation energy and the distribution of the emission points.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.040210.270810a}, url = {http://global-sci.org/intro/article_detail/cicp/7528.html} }The emission of scission neutrons from fissioning nuclei is of high practical interest. To study this process we have used the sudden approximation and also a more realistic approach that takes into account the scission dynamics. Numerically, this implies the solution of the bi-dimensional Schrödinger equation, both stationary and time-dependent. To describe axially symmetric extremely deformed nuclear shapes, we have used the Cassini parametrization. The Hamiltonian is discretized by using finite difference approximations of the derivatives. The main computational challenges are the solution of algebraic eigenvalue problems and of linear systems with large sparse matrices. We have employed appropriate procedures (Arnoldi and bi-conjugate gradients). The numerical solutions have been used to evaluate physical quantities, like the number of emitted neutrons per scission event, the primary fragments' excitation energy and the distribution of the emission points.