- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 859-877.
Published online: 2011-09
Cited by
- BibTex
- RIS
- TXT
Variational image segmentation based on the Mumford and Shah model [31], together with implementation by the piecewise constant level-set method (PCLSM) [26], leads to fully nonlinear Total Variation (TV)-Allen-Cahn equations. The commonly-used numerical approaches usually suffer from the difficulties not only with the non-differentiability of the TV-term, but also with directly evolving the discontinuous piecewise constant-structured solutions. In this paper, we propose efficient dual algorithms to overcome these drawbacks. The use of a splitting-penalty method results in TV-Allen-Cahn type models associated with different "double-well" potentials, which allow for the implementation of the dual algorithm of Chambolle [8]. Moreover, we present a new dual algorithm based on an edge-featured penalty of the dual variable, which only requires to solve a vectorial Allen-Cahn type equation with linear ∇(div)-diffusion rather than fully nonlinear diffusion in the Chambolle's approach. Consequently, more efficient numerical algorithms such as time-splitting method and Fast Fourier Transform (FFT) can be implemented. Various numerical tests show that two dual algorithms are much faster and more stable than the primal gradient descent approach, and the new dual algorithm is at least as efficient as the Chambolle's algorithm but is more accurate. We demonstrate that the new method also provides a viable alternative for image restoration.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.221109.290710a}, url = {http://global-sci.org/intro/article_detail/cicp/7525.html} }Variational image segmentation based on the Mumford and Shah model [31], together with implementation by the piecewise constant level-set method (PCLSM) [26], leads to fully nonlinear Total Variation (TV)-Allen-Cahn equations. The commonly-used numerical approaches usually suffer from the difficulties not only with the non-differentiability of the TV-term, but also with directly evolving the discontinuous piecewise constant-structured solutions. In this paper, we propose efficient dual algorithms to overcome these drawbacks. The use of a splitting-penalty method results in TV-Allen-Cahn type models associated with different "double-well" potentials, which allow for the implementation of the dual algorithm of Chambolle [8]. Moreover, we present a new dual algorithm based on an edge-featured penalty of the dual variable, which only requires to solve a vectorial Allen-Cahn type equation with linear ∇(div)-diffusion rather than fully nonlinear diffusion in the Chambolle's approach. Consequently, more efficient numerical algorithms such as time-splitting method and Fast Fourier Transform (FFT) can be implemented. Various numerical tests show that two dual algorithms are much faster and more stable than the primal gradient descent approach, and the new dual algorithm is at least as efficient as the Chambolle's algorithm but is more accurate. We demonstrate that the new method also provides a viable alternative for image restoration.