- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 756-779.
Published online: 2011-03
Cited by
- BibTex
- RIS
- TXT
In this exploratory study, we present a new method of approximating a large system of ODEs by one with fewer equations, while attempting to preserve the essential dynamics of a reduced set of variables of interest. The method has the following key elements: (i) put a (simple, ad-hoc) probability distribution on the phase space of the ODE; (ii) assert that a small set of replacement variables are to be unknown linear combinations of the not-of-interest variables, and let the variables of the reduced system consist of the variables-of-interest together with the replacement variables; (iii) find the linear combinations that minimize the difference between the dynamics of the original system and the reduced system. We describe this approach in detail for linear systems of ODEs. Numerical techniques and issues for carrying out the required minimization are presented. Examples of systems of linear ODEs and variable-coefficient linear PDEs are used to demonstrate the method. We show that the resulting approximate reduced system of ODEs gives good approximations to the original system. Finally, some directions for further work are outlined.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.271109.150710s}, url = {http://global-sci.org/intro/article_detail/cicp/7520.html} }In this exploratory study, we present a new method of approximating a large system of ODEs by one with fewer equations, while attempting to preserve the essential dynamics of a reduced set of variables of interest. The method has the following key elements: (i) put a (simple, ad-hoc) probability distribution on the phase space of the ODE; (ii) assert that a small set of replacement variables are to be unknown linear combinations of the not-of-interest variables, and let the variables of the reduced system consist of the variables-of-interest together with the replacement variables; (iii) find the linear combinations that minimize the difference between the dynamics of the original system and the reduced system. We describe this approach in detail for linear systems of ODEs. Numerical techniques and issues for carrying out the required minimization are presented. Examples of systems of linear ODEs and variable-coefficient linear PDEs are used to demonstrate the method. We show that the resulting approximate reduced system of ODEs gives good approximations to the original system. Finally, some directions for further work are outlined.