- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 587-606.
Published online: 2011-03
Cited by
- BibTex
- RIS
- TXT
In this article, we discuss a least-squares/fictitious domain method for the solution of linear elliptic boundary value problems with Robin boundary conditions. Let Ω and ω be two bounded domains of Rd such that ω⊂Ω. For a linear elliptic problem in Ω\ω with Robin boundary condition on the boundary γ of ω, our goal here is to develop a fictitious domain method where one solves a variant of the original problem on the full Ω, followed by a well-chosen correction over ω. This method is of the virtual control type and relies on a least-squares formulation making the problem solvable by a conjugate gradient algorithm operating in a well chosen control space. Numerical results obtained when applying our method to the solution of two-dimensional elliptic and parabolic problems are given; they suggest optimal order of convergence.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.071009.160310s}, url = {http://global-sci.org/intro/article_detail/cicp/7512.html} }In this article, we discuss a least-squares/fictitious domain method for the solution of linear elliptic boundary value problems with Robin boundary conditions. Let Ω and ω be two bounded domains of Rd such that ω⊂Ω. For a linear elliptic problem in Ω\ω with Robin boundary condition on the boundary γ of ω, our goal here is to develop a fictitious domain method where one solves a variant of the original problem on the full Ω, followed by a well-chosen correction over ω. This method is of the virtual control type and relies on a least-squares formulation making the problem solvable by a conjugate gradient algorithm operating in a well chosen control space. Numerical results obtained when applying our method to the solution of two-dimensional elliptic and parabolic problems are given; they suggest optimal order of convergence.