- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 9 (2011), pp. 520-541.
Published online: 2011-03
Cited by
- BibTex
- RIS
- TXT
In many problems, one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method (e.g., fourth order accurate) to alleviate the points-per-wavelength constraint by reducing the dispersion errors. The variation of coefficients in the equation may be due to an inhomogeneous medium and/or non-Cartesian coordinates. This renders existing fourth order finite difference methods inapplicable. We develop a new compact scheme that is provably fourth order accurate even for these problems. We present numerical results that corroborate the fourth order convergence rate for several model problems.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.091209.080410s}, url = {http://global-sci.org/intro/article_detail/cicp/7509.html} }In many problems, one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method (e.g., fourth order accurate) to alleviate the points-per-wavelength constraint by reducing the dispersion errors. The variation of coefficients in the equation may be due to an inhomogeneous medium and/or non-Cartesian coordinates. This renders existing fourth order finite difference methods inapplicable. We develop a new compact scheme that is provably fourth order accurate even for these problems. We present numerical results that corroborate the fourth order convergence rate for several model problems.