- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 1211-1240.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
Two fundamental facts of the modern wave turbulence theory are 1) existence of power energy spectra in k-space, and 2) existence of "gaps" in this spectra corresponding to the resonance clustering. Accordingly, three wave turbulent regimes are singled out: kinetic, described by wave kinetic equations and power energy spectra;discrete, characterized by resonance clustering; and mesoscopic, where both types of wave field time evolution coexist. In this review paper we present the results on integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave turbulent regimes. Using a novel method based on the notion of dynamical invariant we show that some of the frequently met clusters are integrable in quadratures for arbitrary initial conditions and some others-only for particular initial conditions. We also identify chaotic behaviour in some cases. Physical implications of the results obtained are discussed.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.110910.160211a}, url = {http://global-sci.org/intro/article_detail/cicp/7481.html} }Two fundamental facts of the modern wave turbulence theory are 1) existence of power energy spectra in k-space, and 2) existence of "gaps" in this spectra corresponding to the resonance clustering. Accordingly, three wave turbulent regimes are singled out: kinetic, described by wave kinetic equations and power energy spectra;discrete, characterized by resonance clustering; and mesoscopic, where both types of wave field time evolution coexist. In this review paper we present the results on integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave turbulent regimes. Using a novel method based on the notion of dynamical invariant we show that some of the frequently met clusters are integrable in quadratures for arbitrary initial conditions and some others-only for particular initial conditions. We also identify chaotic behaviour in some cases. Physical implications of the results obtained are discussed.