- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 1027-1043.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
The classical discrete element approach (DEM) based on Newtonian dynamics can be divided into two major groups, event-driven methods (EDM) and time-driven methods (TDM). Generally speaking, TDM simulations are suited for cases with high volume fractions where there are collisions between multiple objects. EDM simulations are suited for cases with low volume fractions from the viewpoint of CPU time. A method combining EDM and TDM called Hybrid Algorithm of event-driven and time-driven methods (HAET) is presented in this paper. The HAET method employs TDM for the areas with high volume fractions and EDM for the remaining areas with low volume fractions. It can decrease the CPU time for simulating granular flows with strongly non-uniform volume fractions. In addition, a modified EDM algorithm using a constant time as the lower time step limit is presented. Finally, an example is presented to demonstrate the hybrid algorithm.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.160610.211210a}, url = {http://global-sci.org/intro/article_detail/cicp/7473.html} }The classical discrete element approach (DEM) based on Newtonian dynamics can be divided into two major groups, event-driven methods (EDM) and time-driven methods (TDM). Generally speaking, TDM simulations are suited for cases with high volume fractions where there are collisions between multiple objects. EDM simulations are suited for cases with low volume fractions from the viewpoint of CPU time. A method combining EDM and TDM called Hybrid Algorithm of event-driven and time-driven methods (HAET) is presented in this paper. The HAET method employs TDM for the areas with high volume fractions and EDM for the remaining areas with low volume fractions. It can decrease the CPU time for simulating granular flows with strongly non-uniform volume fractions. In addition, a modified EDM algorithm using a constant time as the lower time step limit is presented. Finally, an example is presented to demonstrate the hybrid algorithm.