- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 940-978.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
The aim of the present work is to develop a general formalism to derive staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstructured grids. To this end, we make use of the compatible discretization that has been initially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, momentum equation is discretized by means of subcell forces and specific internal energy equation is obtained using total energy conservation. The main contribution of this work lies in the fact that the subcell force is derived invoking Galilean invariance and thermodynamic consistency. That is, we deduce a general form of the sub-cell force so that a cell entropy inequality is satisfied. The subcell force writes as a pressure contribution plus a tensorial viscous contribution which is proportional to the difference between the nodal velocity and the cell-centered velocity. This cell-centered velocity is a supplementary degree of freedom that is solved by means of a cell-centered approximate Riemann solver. To satisfy the second law of thermodynamics, the local subcell tensor involved in the viscous part of the subcell force must be symmetric positive definite. This subcell tensor is the cornerstone of the scheme. One particular expression of this tensor is given. A high-order extension of this discretization is provided. Numerical tests are presented in order to assess the efficiency of this approach. The results obtained for various representative configurations of one- and two-dimensional compressible fluid flows show the robustness and the accuracy of this scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.170310.251110a}, url = {http://global-sci.org/intro/article_detail/cicp/7470.html} }The aim of the present work is to develop a general formalism to derive staggered discretizations for Lagrangian hydrodynamics on two-dimensional unstructured grids. To this end, we make use of the compatible discretization that has been initially introduced by E. J. Caramana et al., in J. Comput. Phys., 146 (1998). Namely, momentum equation is discretized by means of subcell forces and specific internal energy equation is obtained using total energy conservation. The main contribution of this work lies in the fact that the subcell force is derived invoking Galilean invariance and thermodynamic consistency. That is, we deduce a general form of the sub-cell force so that a cell entropy inequality is satisfied. The subcell force writes as a pressure contribution plus a tensorial viscous contribution which is proportional to the difference between the nodal velocity and the cell-centered velocity. This cell-centered velocity is a supplementary degree of freedom that is solved by means of a cell-centered approximate Riemann solver. To satisfy the second law of thermodynamics, the local subcell tensor involved in the viscous part of the subcell force must be symmetric positive definite. This subcell tensor is the cornerstone of the scheme. One particular expression of this tensor is given. A high-order extension of this discretization is provided. Numerical tests are presented in order to assess the efficiency of this approach. The results obtained for various representative configurations of one- and two-dimensional compressible fluid flows show the robustness and the accuracy of this scheme.