- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 912-919.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
We investigate the critical properties of the Ising S=1/2 and S=1 model on (3,4,6,4) and (34,6) Archimedean lattices. The system is studied through the extensive Monte Carlo simulations. We calculate the critical temperature as well as the critical point exponents γ/ν, β/ν, and ν basing on finite size scaling analysis. The calculated values of the critical temperature for S=1 are kBTC/J=1.590(3), and kBTC/J=2.100(4) for (3,4,6,4) and (34,6) Archimedean lattices, respectively. The critical exponents β/ν, γ/ν, and 1/ν, for S=1 are β/ν=0.180(20), γ/ν=1.46(8), and 1/ν=0.83(5), for (3,4,6,4) and 0.103(8), 1.44(8), and 0.94(5), for (34,6) Archimedean lattices. Obtained results differ from the Ising S = 1/2 model on (3,4,6,4), (34,6) and square lattice. The evaluated effective dimensionality of the system for S =1 are Deff =1.82(4), for (3,4,6,4), and Deff=1.64(5) for (34,6).
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.090910.021210a}, url = {http://global-sci.org/intro/article_detail/cicp/7468.html} }We investigate the critical properties of the Ising S=1/2 and S=1 model on (3,4,6,4) and (34,6) Archimedean lattices. The system is studied through the extensive Monte Carlo simulations. We calculate the critical temperature as well as the critical point exponents γ/ν, β/ν, and ν basing on finite size scaling analysis. The calculated values of the critical temperature for S=1 are kBTC/J=1.590(3), and kBTC/J=2.100(4) for (3,4,6,4) and (34,6) Archimedean lattices, respectively. The critical exponents β/ν, γ/ν, and 1/ν, for S=1 are β/ν=0.180(20), γ/ν=1.46(8), and 1/ν=0.83(5), for (3,4,6,4) and 0.103(8), 1.44(8), and 0.94(5), for (34,6) Archimedean lattices. Obtained results differ from the Ising S = 1/2 model on (3,4,6,4), (34,6) and square lattice. The evaluated effective dimensionality of the system for S =1 are Deff =1.82(4), for (3,4,6,4), and Deff=1.64(5) for (34,6).