- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 695-715.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
To finite-difference model elastic wave propagation in a combined structure with solid, fluid and porous subregions, a set of modified Biot's equations are used, which can be reduced to the governing equations in solids, fluids as well as fluid-saturated porous media. Based on the modified Biot's equations, the field quantities are finite-difference discretized into unified forms in the whole structure, including those on any interface between the solid, fluid and porous subregions. For the discrete equations on interfaces, however, the harmonic mean of shear modulus and the arithmetic mean of the other parameters on both sides of the interfaces are used. These parameter averaging equations are validated by deriving from the continuity conditions on the interfaces. As an example of using the parameter averaging technique, a 2-D finite-difference scheme with a velocity-stress staggered grid in cylindrical coordinates is implemented to simulate the acoustic logs in porous formations. The finite difference simulations of the acoustic logging in a homogeneous formation agree well with those obtained by the analytical method. The acoustic logs with mud cakes clinging to the borehole well are simulated for investigating the effect of mud cake on the acoustic logs. The acoustic logs with a varying radius borehole embedded in a horizontally stratified formation are also simulated by using the proposed finite-difference scheme.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.020810.161210a}, url = {http://global-sci.org/intro/article_detail/cicp/7457.html} }To finite-difference model elastic wave propagation in a combined structure with solid, fluid and porous subregions, a set of modified Biot's equations are used, which can be reduced to the governing equations in solids, fluids as well as fluid-saturated porous media. Based on the modified Biot's equations, the field quantities are finite-difference discretized into unified forms in the whole structure, including those on any interface between the solid, fluid and porous subregions. For the discrete equations on interfaces, however, the harmonic mean of shear modulus and the arithmetic mean of the other parameters on both sides of the interfaces are used. These parameter averaging equations are validated by deriving from the continuity conditions on the interfaces. As an example of using the parameter averaging technique, a 2-D finite-difference scheme with a velocity-stress staggered grid in cylindrical coordinates is implemented to simulate the acoustic logs in porous formations. The finite difference simulations of the acoustic logging in a homogeneous formation agree well with those obtained by the analytical method. The acoustic logs with mud cakes clinging to the borehole well are simulated for investigating the effect of mud cake on the acoustic logs. The acoustic logs with a varying radius borehole embedded in a horizontally stratified formation are also simulated by using the proposed finite-difference scheme.