- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 607-634.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
A data-driven model reduction strategy is presented for the representation of random polycrystal microstructures. Given a set of microstructure snapshots that satisfy certain statistical constraints such as given low-order moments of the grain size distribution, using a non-linear manifold learning approach, we identify the intrinsic low-dimensionality of the microstructure manifold. In addition to grain size, a linear dimensionality reduction technique (Karhunun-Loéve Expansion) is used to reduce the texture representation. The space of viable microstructures is mapped to a low-dimensional region thus facilitating the analysis and design of polycrystal microstructures. This methodology allows us to sample microstructure features in the reduced-order space thus making it a highly efficient, low-dimensional surrogate for representing microstructures (grain size and texture). We demonstrate the model reduction approach by computing the variability of homogenized thermal properties using sparse grid collocation in the reduced-order space that describes the grain size and orientation variability.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.200510.061210a}, url = {http://global-sci.org/intro/article_detail/cicp/7454.html} }A data-driven model reduction strategy is presented for the representation of random polycrystal microstructures. Given a set of microstructure snapshots that satisfy certain statistical constraints such as given low-order moments of the grain size distribution, using a non-linear manifold learning approach, we identify the intrinsic low-dimensionality of the microstructure manifold. In addition to grain size, a linear dimensionality reduction technique (Karhunun-Loéve Expansion) is used to reduce the texture representation. The space of viable microstructures is mapped to a low-dimensional region thus facilitating the analysis and design of polycrystal microstructures. This methodology allows us to sample microstructure features in the reduced-order space thus making it a highly efficient, low-dimensional surrogate for representing microstructures (grain size and texture). We demonstrate the model reduction approach by computing the variability of homogenized thermal properties using sparse grid collocation in the reduced-order space that describes the grain size and orientation variability.