- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 474-508.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
In this paper, we develop, analyze and test local discontinuous Galerkin (LDG) methods for solving the Degasperis-Procesi equation which contains nonlinear high order derivatives, and possibly discontinuous or sharp transition solutions. The LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L2 stability for general solutions. The proof of the total variation stability of the schemes for the piecewise constant P0 case is also given. The numerical simulation results for different types of solutions of the nonlinear Degasperis-Procesi equation are provided to illustrate the accuracy and capability of the LDG method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.300410.300710a}, url = {http://global-sci.org/intro/article_detail/cicp/7451.html} }In this paper, we develop, analyze and test local discontinuous Galerkin (LDG) methods for solving the Degasperis-Procesi equation which contains nonlinear high order derivatives, and possibly discontinuous or sharp transition solutions. The LDG method has the flexibility for arbitrary h and p adaptivity. We prove the L2 stability for general solutions. The proof of the total variation stability of the schemes for the piecewise constant P0 case is also given. The numerical simulation results for different types of solutions of the nonlinear Degasperis-Procesi equation are provided to illustrate the accuracy and capability of the LDG method.