- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 10 (2011), pp. 161-182.
Published online: 2011-10
Cited by
- BibTex
- RIS
- TXT
In this paper we propose a development of the finite difference method, called the tailored finite point method, for solving steady magnetohydrodynamic (MHD) duct flow problems with a high Hartmann number. When the Hartmann number is large, the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer. Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy. However, the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh. Firstly, we devise the tailored finite point method for the scalar inhomogeneous convection-diffusion problem, and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations. For each interior grid point of a given rectangular mesh, we construct a finite-point difference operator at that point with some nearby grid points, where the coefficients of the difference operator are tailored to some particular properties of the problem. Numerical examples are provided to show the high performance of the proposed method.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.070110.020710a}, url = {http://global-sci.org/intro/article_detail/cicp/7439.html} }In this paper we propose a development of the finite difference method, called the tailored finite point method, for solving steady magnetohydrodynamic (MHD) duct flow problems with a high Hartmann number. When the Hartmann number is large, the MHD duct flow is convection-dominated and thus its solution may exhibit localized phenomena such as the boundary layer. Most conventional numerical methods can not efficiently solve the layer problem because they are lacking in either stability or accuracy. However, the proposed tailored finite point method is capable of resolving high gradients near the layer regions without refining the mesh. Firstly, we devise the tailored finite point method for the scalar inhomogeneous convection-diffusion problem, and then extend it to the MHD duct flow which consists of a coupled system of convection-diffusion equations. For each interior grid point of a given rectangular mesh, we construct a finite-point difference operator at that point with some nearby grid points, where the coefficients of the difference operator are tailored to some particular properties of the problem. Numerical examples are provided to show the high performance of the proposed method.