- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 1415-1438.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
This paper is a continuation of our earlier work [SIAM J. Sci. Comput., 32(2010), pp. 2875–2907] in which a numerical moment method with arbitrary order of moments was presented. However, the computation may break down during the calculation of the structure of a shock wave with Mach number M0≥3. In this paper, we concentrate on the regularization of the moment systems. First, we apply the Maxwell iteration to the infinite moment system and determine the magnitude of each moment with respect to the Knudsen number. After that, we obtain the approximation of high order moments and close the moment systems by dropping some high-order terms. Linearization is then performed to obtain a very simple regularization term, thus it is very convenient for numerical implementation. To validate the new regularization, the shock structures of low order systems are computed with different shock Mach numbers.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.050111.140711a}, url = {http://global-sci.org/intro/article_detail/cicp/7420.html} }This paper is a continuation of our earlier work [SIAM J. Sci. Comput., 32(2010), pp. 2875–2907] in which a numerical moment method with arbitrary order of moments was presented. However, the computation may break down during the calculation of the structure of a shock wave with Mach number M0≥3. In this paper, we concentrate on the regularization of the moment systems. First, we apply the Maxwell iteration to the infinite moment system and determine the magnitude of each moment with respect to the Knudsen number. After that, we obtain the approximation of high order moments and close the moment systems by dropping some high-order terms. Linearization is then performed to obtain a very simple regularization term, thus it is very convenient for numerical implementation. To validate the new regularization, the shock structures of low order systems are computed with different shock Mach numbers.