- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 1236-1260.
Published online: 2012-04
Cited by
- BibTex
- RIS
- TXT
A review is presented on our recent Vlasov-Fokker-Planck (VFP) simulation code development and applications for high-power laser-plasma interactions. Numerical schemes are described for solving the kinetic VFP equation with both electron-electron and electron-ion collisions in one-spatial and two-velocity (1D2V) coordinates. They are based on the positive and flux conservation method and the finite volume method, and these two methods can insure the particle number conservation. Our simulation code can deal with problems in high-power laser/beam-plasma interactions, where highly non-Maxwellian electron distribution functions usually develop and the widely-used perturbation theories with the weak anisotropy assumption of the electron distribution function are no longer in point. We present some new results on three typical problems: firstly the plasma current generation in strong direct current electric fields beyond Spitzer-Härm's transport theory, secondly the inverse bremsstrahlung absorption at high laser intensity beyond Langdon's theory, and thirdly the heat transport with steep temperature and/or density gradients in laser-produced plasma. Finally, numerical parameters, performance, the particle number conservation, and the energy conservation in these simulations are provided.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.060710.040811s}, url = {http://global-sci.org/intro/article_detail/cicp/7409.html} }A review is presented on our recent Vlasov-Fokker-Planck (VFP) simulation code development and applications for high-power laser-plasma interactions. Numerical schemes are described for solving the kinetic VFP equation with both electron-electron and electron-ion collisions in one-spatial and two-velocity (1D2V) coordinates. They are based on the positive and flux conservation method and the finite volume method, and these two methods can insure the particle number conservation. Our simulation code can deal with problems in high-power laser/beam-plasma interactions, where highly non-Maxwellian electron distribution functions usually develop and the widely-used perturbation theories with the weak anisotropy assumption of the electron distribution function are no longer in point. We present some new results on three typical problems: firstly the plasma current generation in strong direct current electric fields beyond Spitzer-Härm's transport theory, secondly the inverse bremsstrahlung absorption at high laser intensity beyond Langdon's theory, and thirdly the heat transport with steep temperature and/or density gradients in laser-produced plasma. Finally, numerical parameters, performance, the particle number conservation, and the energy conservation in these simulations are provided.