- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 739-755.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to the maximal order $p$=18 in the time of propagation (Monte Carlo time step), which substantially improves the convergence of discretized amplitudes to their exact continuum values. Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes, using the recursive Schrödinger equation approach. In addition to the general 1D quantum theory, developed Mathematica codes are capable of calculating effective actions for specific models, for general 2D and 3D potentials, as well as for a general many-body theory in arbitrary number of spatial dimensions.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.131210.180411a}, url = {http://global-sci.org/intro/article_detail/cicp/7389.html} }We present Path Integral Monte Carlo C code for calculation of quantum mechanical transition amplitudes for 1D models. The SPEEDUP C code is based on the use of higher-order short-time effective actions and implemented to the maximal order $p$=18 in the time of propagation (Monte Carlo time step), which substantially improves the convergence of discretized amplitudes to their exact continuum values. Symbolic derivation of higher-order effective actions is implemented in SPEEDUP Mathematica codes, using the recursive Schrödinger equation approach. In addition to the general 1D quantum theory, developed Mathematica codes are capable of calculating effective actions for specific models, for general 2D and 3D potentials, as well as for a general many-body theory in arbitrary number of spatial dimensions.