- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 726-738.
Published online: 2012-11
Cited by
- BibTex
- RIS
- TXT
We report an efficient phase field formalism to compute the stress distribution in polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy. The dependence of elastic stiffness tensor on grain orientation is taken into account, and the elastic equilibrium equation is solved using a spectral iterative perturbation method. We discuss its applications to computing residual stress distribution in systems containing arbitrarily shaped cavities and cracks (with zero elastic modulus) and to determining the effective elastic properties of polycrystals and multilayered composites.
We report an efficient phase field formalism to compute the stress distribution in polycrystalline materials with arbitrary elastic inhomogeneity and anisotropy. The dependence of elastic stiffness tensor on grain orientation is taken into account, and the elastic equilibrium equation is solved using a spectral iterative perturbation method. We discuss its applications to computing residual stress distribution in systems containing arbitrarily shaped cavities and cracks (with zero elastic modulus) and to determining the effective elastic properties of polycrystals and multilayered composites.