- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 691-708.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
We present a new high order method in space and time for solving the wave equation, based on a new interpretation of the "Modified Equation" technique. Indeed, contrary to most of the works, we consider the time discretization before the space discretization. After the time discretization, an additional biharmonic operator appears, which can not be discretized by classical finite elements. We propose a new Discontinuous Galerkin method for the discretization of this operator, and we provide numerical experiments proving that the new method is more accurate than the classical Modified Equation technique with a lower computational burden.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.311209.051110s}, url = {http://global-sci.org/intro/article_detail/cicp/7386.html} }We present a new high order method in space and time for solving the wave equation, based on a new interpretation of the "Modified Equation" technique. Indeed, contrary to most of the works, we consider the time discretization before the space discretization. After the time discretization, an additional biharmonic operator appears, which can not be discretized by classical finite elements. We propose a new Discontinuous Galerkin method for the discretization of this operator, and we provide numerical experiments proving that the new method is more accurate than the classical Modified Equation technique with a lower computational burden.