- Journal Home
- Volume 36 - 2024
- Volume 35 - 2024
- Volume 34 - 2023
- Volume 33 - 2023
- Volume 32 - 2022
- Volume 31 - 2022
- Volume 30 - 2021
- Volume 29 - 2021
- Volume 28 - 2020
- Volume 27 - 2020
- Volume 26 - 2019
- Volume 25 - 2019
- Volume 24 - 2018
- Volume 23 - 2018
- Volume 22 - 2017
- Volume 21 - 2017
- Volume 20 - 2016
- Volume 19 - 2016
- Volume 18 - 2015
- Volume 17 - 2015
- Volume 16 - 2014
- Volume 15 - 2014
- Volume 14 - 2013
- Volume 13 - 2013
- Volume 12 - 2012
- Volume 11 - 2012
- Volume 10 - 2011
- Volume 9 - 2011
- Volume 8 - 2010
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2009
- Volume 4 - 2008
- Volume 3 - 2008
- Volume 2 - 2007
- Volume 1 - 2006
Commun. Comput. Phys., 11 (2012), pp. 647-659.
Published online: 2012-12
Cited by
- BibTex
- RIS
- TXT
We propose a numerical procedure to extend to full aperture the acoustic far-field pattern (FFP) when measured in only few observation angles. The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion. The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms. We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements.
}, issn = {1991-7120}, doi = {https://doi.org/10.4208/cicp.281209.150610s}, url = {http://global-sci.org/intro/article_detail/cicp/7383.html} }We propose a numerical procedure to extend to full aperture the acoustic far-field pattern (FFP) when measured in only few observation angles. The reconstruction procedure is a multi-step technique that combines a total variation regularized iterative method with the standard Tikhonov regularized pseudo-inversion. The proposed approach distinguishes itself from existing solution methodologies by using an exact representation of the total variation which is crucial for the stability and robustness of Newton algorithms. We present numerical results in the case of two-dimensional acoustic scattering problems to illustrate the potential of the proposed procedure for reconstructing the full aperture of the FFP from very few noisy data such as backscattering synthetic measurements.